Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead Short Term Solar PV Power Forecasting
نویسندگان
چکیده
Accurate solar photovoltaic (PV) power forecasting is an essential tool for mitigating the negative effects caused by the uncertainty of PV output power in systems with high penetration levels of solar PV generation. Weather classification based modeling is an effective way to increase the accuracy of day-ahead short-term (DAST) solar PV power forecasting because PV output power is strongly dependent on the specific weather conditions in a given time period. However, the accuracy of daily weather classification relies on both the applied classifiers and the training data. This paper aims to reveal how these two factors impact the classification performance and to delineate the relation between classification accuracy and sample dataset scale. Two commonly used classification methods, K-nearest neighbors (KNN) and support vector machines (SVM) are applied to classify the daily local weather types for DAST solar PV power forecasting using the operation data from a grid-connected PV plant in Hohhot, Inner Mongolia, China. We assessed the performance of SVM and KNN approaches, and then investigated the influences of sample scale, the number of categories, and the data distribution in different categories on the daily weather classification results. The simulation results illustrate that SVM performs well with small sample scale, while KNN is more sensitive to the length of the training dataset and can achieve higher accuracy than SVM with sufficient samples.
منابع مشابه
SVR-Based Model to Forecast PV Power Generation under Different Weather Conditions
Inaccurate forecasting of photovoltaic (PV) power generation is a great concern in the planning and operation of stable and reliable electric grid systems as well as in promoting large-scale PV deployment. The paper proposes a generalized PV power forecasting model based on support vector regression, historical PV power output, and corresponding meteorological data. Weather conditions are broad...
متن کاملDecision Technique of Solar Radiation Prediction Applying Recurrent Neural Network for Short-Term Ahead Power Output of Photovoltaic System
In recent years, introduction of a renewable energy source such as solar energy is expected. However, solar radiation is not constant and power output of photovoltaic (PV) system is influenced by weather conditions. It is difficult for getting to know accurate power output of PV system. In order to forecast the power output of PV system as accurate as possible, this paper proposes a decision te...
متن کاملDay-Ahead Solar Forecasting Based on Multi-level Solar Measurements
The growing proliferation in solar deployment, especially at distribution level, has made the case for power system operators to develop more accurate solar forecasting models. This paper proposes a solar photovoltaic (PV) generation forecasting model based on multi-level solar measurements and utilizing a nonlinear autoregressive with exogenous input (NARX) model to improve the training and ac...
متن کاملNeuro-fuzzy short-term forecasting model for PV plants optimized with genetic algorithm
This paper presents a short-term forecasting model designed to forecast the hourly power production in a grid-connected photovoltaic plant. The model is based on neuro-fuzzy systems optimized with the use of a genetic algorithm. The model uses as inputs forecasted weather variables obtained with a meso-scale numerical weather prediction model. The model was applied to forecast the hourly produc...
متن کاملSupport Vector Regression for Solar Power Prediction
Abstract In recent years, renewable energies have been covering an increasing part of the worldwide electrical power demand. The additional volatility introduced to power grids by weather dependent renewable energy sources, i.e., wind and solar, makes it necessary to improve the accuracy of energy forecasts, so that the underlying electrical grid can be operated in a cost efficient way. Governm...
متن کامل